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Glyphosate is a non-selective, systemic herbicide highly toxic to sensitive plant species. Its use has seen a
significant increase due to the increased adoption of genetically modified glyphosate-resistant crops since
the mid-1990s. Glyphosate application for weed control in glyphosate-resistant crops can drift onto an off-
target area, causing unwanted injury to non-glyphosate resistant plants. Thus, early detection of crop
injury from off-target drift of herbicide is critical in crop production. In non-glyphosate-resistant plants,
glyphosate causes a reduction in chlorophyll content and metabolic disturbances. These subtle changes
may be detectable by plant reflectance, which suggests the possibility of using optical remote sensing
for early detection of drift damage to plants. In order to determine the feasibility of using optical remote
sensing, a greenhouse study was initiated to measure the canopy reflectance of soybean plants using a por-
table hyperspectral image sensor. Non-glyphosate resistant soybean (Glycine max L. Merr.) plants were
treated with glyphosate using a pneumatic track sprayer in a spray chamber. The three treatment groups
were control (0 kg ae/ha), low dosage (0.086 kg ae/ha), and high dosage (0.86 kg ae/ha), each with four 2-
plant pots. Hyperspectral images were taken at 4, 24, 48, and 72 h after application. The extracted canopy
reflectance data was analyzed with vegetation indices. The results indicated that a number of vegetation
indices could identify crop injury at 24 h after application, at which time visual inspection could not dis-
tinguish between glyphosate injured and non-treated plants. To improve the results a modified method of
spectral derivative analysis was proposed and applied to find that the method produced better results than
the vegetation indices. Four selected first derivatives at wavelength 519, 670, 685, and 697 nm could
potentially differentiate crop injury at 4 h after treatment. The overall false positive rate was lower than
the vegetation indices. Furthermore, the derivatives demonstrated the ability to separate treatment
groups with different dosages. The study showed that hyperspectral imaging of plant canopy reflectance
could be a useful tool for early detection of soybean crop injury from glyphosate, and that the modified
spectral derivative analysis had a better performance than vegetation indices.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

During routine herbicide applications, herbicide drift can occur
when herbicide particles move onto off-target areas under weather
conditions that are favorable for drift. When the herbicide lands on
the off-target plant surfaces, unwanted plant damage can occur.
Thus, in herbicide applications, one of the main objectives is to
minimize off-target drift that may result in injury to other crops.
This task can be implemented through proper training, careful
planning of herbicide applications, good maintenance of equip-
ment, and field experience. However, when drift does occur, it is
important to be able to detect the onset of the crop injury due to
ll rights reserved.
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herbicide drift, and preferably be able to determine the relation-
ship between the crop injury and dosage. In the past decade, one
herbicide, glyphosate, has been widely adopted for weed manage-
ment in agricultural fields due to the increased utilization of genet-
ically modified crops that are resistant to glyphosate. Glyphosate is
a non-selective herbicide used for control of weeds before planting
crops and postemergence (POST) applications in genetically modi-
fied GR (glyphosate-resistant) crops. Glyphosate use has seen a sig-
nificant increase. For example, the amount of glyphosate (Active
Ingredient) on all soybean crops in the US has increased from
4896 (thousand lb) in 1996 to 96,725 (thousand lb) in 2006 (Center
for Food Safety, 2008).

Glyphosate is highly active on sensitive plant species even at
low doses. Once applied, the inhibition of plant growth is immedi-
ate due to the depletion of aromatic amino acids essential for plant
growth. In addition to growth reduction, glyphosate causes chloro-
sis and necrosis. The consequence is yield reduction or complete
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destruction of a susceptible plant. Glyphosate is usually applied to
foliage through ground or aerial applications. Typical applications
include postemergence application for weed control. For instance,
glyphosate is normally applied in GR soybean fields for weed con-
trol in the early growth season. However weather conditions dur-
ing this period of time in the year are normally windy (depends on
location, Henry et al., 2004), and this increases the possibility of
glyphosate drift. Glyphosate drift onto non-target crops is common
in agricultural regions. The drift to non-GR crops may cause injury
and reduce yields. When drift occurs, farmers are interested in the
coverage and extent of the drift damage in order to project the
severity of unintended injury as early as possible. With this infor-
mation farmers can take appropriate actions to best protect their
interests. Such actions include replanting or seeking insurance
compensation. Thus, the study of glyphosate drift is important to
the farming industry. Stated another way, an early warning system
for herbicide drift detection in weed management would greatly
benefit farmers.

A number of injury identification methods have been evaluated
on crops injured by off-target drift of glyphosate. Typically, visual
examination provides a way to assess drift occurrence and extent
of injury. This approach is possible when injury is obvious to the
naked eye. In this case, aerial photography can be used to aid in
detection over large areas. Another approach to assess severity of
plant damage is to measure physical factors such as plant height
(Rowland, 2000) and/or by measurement of chlorophyll and shi-
kimate levels (Reddy et al., 2010; Ding et al., 2011a). Above all,
these methods can provide damage assessment when the injury
is obvious, well after application (7–14 days after the drift inci-
dent). These damage assessment methods are tedious and cause
delay in early critical decision-making. Alternative approaches for
early warning/detection of glyphosate drift damage would be
highly desirable.

In the injury process, glyphosate also causes a reduction in chlo-
rophyll content, decreases in photosynthetic rate, nitrate reductase
activity, and nitrogen fixation and accumulation (Bellaloui et al.,
2006). These changes in the plant may be detectable by plant
reflectance measurements before symptoms of injury become vis-
ible. This suggests the possibility of using sensitive, optical remote
sensing for early detection of drift damage to plants. Several re-
mote sensing methods have been developed previously in an at-
tempt to detect crop injury due to herbicide drift. The methods
include multispectral imaging (Thelen et al., 2004; Huang et al.,
2010), fiber optic-based spectral reflectance measurements (Henry
et al., 2004; Huang et al., 2012), and chlorophyll fluorescence mea-
surements (Huang et al., 2012). Among them the chlorophyll fluo-
rescence method is not suitable for rapid and early detection, as its
measurement requires direct contact against a small section of the
plant leaves for a period of time.

The multispectral imaging approach (Thelen et al., 2004; Huang
et al., 2010) used imagery with several broadband reflectance mea-
surements including at least a red and a near-infrared band. The
multispectral images could provide good spatial resolution in the
data. However, the broadband multispectral imagery lacks spectral
resolution in the reflectance measurement, and standard bands
customarily assigned to multispectral systems are not necessarily
appropriate for optimal damage detection. Consequently, a major
drawback of this method is that the fine spectral reflectance fea-
ture of a plant at the red edge (�700 nm) of the electromagnetic
spectrum range cannot be explored. The red edge is an important
spectral range for plant vigor and stress monitoring.

The fiber optic-based method (Henry et al., 2004; Huang et al.,
2012) provides an opportunity for narrowband reflectance mea-
surements. The narrowband reflectance has the capability of
revealing subtle changes in plant reflectance, which could present
more useful information in detecting the onset of crop injury.
However, the fiber optic-based reflectance measurement lacks spa-
tial information in the data. It is a single point measurement of the
plant. The reflectance data is a mixed signal of all the reflectance
within the fiber’s field of view. Huang et al. (2012) avoided the
spectral mixture problem by pointing the optical fiber directly over
a single leaf. However this approach limited the viewing area. Can-
opy reflectance, which is crucial for crop stress detection, could not
be measured in this way. To better differentiate various plant parts
and background, it is desirable to use spectral data with both high
spatial and spectral resolution. In this case, an imaging spectrom-
eter or hyperspectral imaging system (Yao et al., 2008) can be used
to provide such high quality data. Hyperspectral imaging systems
have been widely used in agriculture applications, with data from
space-borne (Gong et al., 2003), airborne (Yao and Tian, 2003), and
terrestrial-based platforms (Ye et al., 2008).

When using hyperspectral image data for vegetation and plant
monitoring, vegetation index (VI) is widely applied. Many vegeta-
tion indices have been used in different applications. Among them,
the most important vegetation index is the Normalized Difference
Vegetation Index (NDVI) (Rouse et al., 1973) calculated by using
the data at the red and near infrared wavelengths. Hyperspectral
images make it possible to build more refined vegetation indices
by using distinct narrow-bands. A common practice in calculating
hyperspectral indices is the use of individual image bands. For
most of the time one specific image band pair is selected based
on crop characteristics. For example, one study (Haboudane
et al., 2002) used CASI (Compact Airborne Spectral Imager) images
to calculate VIs. Image bands centered at 550, 670, 700, and
800 nm were used to calculate several vegetation indices for crop
chlorophyll content prediction. The reason for selecting 700 nm
was because it is located at the edge between the region where
vegetation reflectance is dominated by pigment absorption and
the beginning of the red edge region where reflectance is more
influenced by the structural characteristics of the vegetation. To
apply VIs for glyphosate injury detection on soybean plant, Huang
et al. (2012) used 4 VIs, NDVI, RVI (Ratio Vegetation Index), SAVI
(Soil Adjusted Vegetation Index), and DVI (Difference Vegetation
Index). It was found that crop stress due to glyphosate injury could
be detected 24 h after application. However this data was based on
spectral measurements over part of a single leaf instead of using
canopy reflectance.

Derivative analysis is another approach to analyze hyperspec-
tral data (Thorp et al., 2004). Derivative analysis is promising for
use with remote sensing data (Tsai and Philpot, 1998). Higher or-
der derivatives should be relatively insensitive to illumination
variations, especially with hyperspectral data, due to its small
spectral sampling interval. The most commonly used derivatives
are first and second order. Since derivative analysis is quite sensi-
tive to noise, spectral data smoothing is normally applied. Exam-
ples of the filtering techniques include Savitzky–Golay filtering
and mean low-pass filtering. One study (Smith et al., 2004) sug-
gested that derivative analysis in the red edge range (690–
750 nm) could be used for plant stress detection. However, another
study (Estep and Carter, 2005) found that when certain derivatives
were used for plant nitrogen and water stress detection, there was
no advantage of using the derivatives compared to narrow-band
vegetation indices. The study used AVIRIS (Airborne Visible/Infra-
red Imaging Spectrometer) data over corn plots having different
nitrogen fertilization treatments. The applied first derivatives were
at 495, 568, 696, 982, and 1025 nm. Since these wavelengths were
pre-defined from other literature, they might not be suitable for all
applications.

This paper utilized a high resolution portable hyperspectral
imaging system to study glyphosate damage on soybean plants.
The study was conducted in a greenhouse to evaluate crop canopy
reflectance data for the detection of crop injury caused by applied
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glyphosate. The objectives of this study were, to determine the
effectiveness of canopy reflectance for detecting the onset of crop
injury caused by applied glyphosate, and to propose and develop
a modified derivative analysis method for crop stress detection.

2. Materials and methods

2.1. Hyperspectral imaging system

The visible near-infrared hyperspectral imaging system (Fig. 1)
includes a 14-bit PCO1600 CCD (charge-coupled device) high reso-
lution camera from the Cooke Corporation (Romulus, MI, USA), an
ImSpector V10E spectrograph (Spectral Imaging Ltd., Oulu, Fin-
land) with a 30 lm entrance slit, and a 23 mm Schneider lens.
The effective wavelength range is 400–900 nm. The PCO1600 cam-
era has a CCD with resolution of 1600 � 1200 pixels and is thermo-
electrically cooled. Image data transfer from the camera to the
computer is through an IEEE 1394 ‘‘firewire’’ link. The system uses
push-broom line scanning. It scans an input image within the focal
plane of a front lens and disperses an input image line (via the
spectrograph) vertically as a function of the spectral wavelengths.
In order to move the front lens for the focal plane line scanning, the
system utilized a linear motor (Model Stage A-10 motor with a
NCS-1S Motor controller, Newmark Systems Inc., Mission Viejo,
CA) for internal scanning. Thus, there is no need for additional
linear stage to move the target. In order to illuminate the target
area in the in-door environment, two mr16 tungsten halogen bulbs
with dichroic reflectors are mounted with the sensor on an
adjustable camera stand. The lamps are fitted with diffusion and
color-balancing filters in order to resolve specular reflectance and
to simulate natural lighting.

2.2. Experiment configuration and design

This experiment was conducted in a greenhouse environment
at the Crop Production Systems Research unit, USDA-ARS, Stone-
ville, MS. A total of 12 pots of non-glyphosate-resistant soybeans
(cultivar SO80120LL) plants raised in pots were used. There were
Fig. 1. Illustration of the visible near-infrared hyperspectral imaging system.
two plants per pot. The pots remained in the greenhouse through-
out the experiment. The soybean plants were subjected to glyphos-
ate treatments 4 weeks after planting (at three-trifoliolate leaf
stage). Four plants received low dose treatment (0.086 kg ae/ha),
and four high dose treatment (0.86 kg ae/ha). The remaining four
plants were used as controls (no treatment). One application of
the predetermined treatment was applied in a spray chamber
(Ding et al., 2011b). Specifically, in the spray chamber a TeeJet
8002E nozzle (TeeJet Technologies, Wheaton, Illinois) was used
to spray the low and high doses of glyphosate at spray rate of
187 L/ha. Pressure was set at 138 kPa, release height was 36 cm,
and forward speed was 3.7 km/h.

The hyperspectral imaging system was set up in the greenhouse
where the soybean pots were located. In order to record chronolog-
ical plant injury response, a series of images were taken after
spraying treatment. The time series intervals for imaging remained
the same at 4, 24, 48, and 72 h after application. Thus, the total
number of sample images was 48. In addition, dark and reference
images were taken for the purpose of image calibration. The dark
image data were taken with the camera lens completely blocked.
The reference scan was taken over a standard diffuse reflectance
surface. In this study, a 12 � 12 in. (30.5 � 30.5 cm2) white diffuse
reflectance standard panel (Spectralon: SRT-99-100 UV–VIS–NIR
Diffuse Reflectance Target, LabSphere Inc.) was used to take refer-
ence reflectance data. The dark image was taken once for each
imaging session. The reference image was taken for every pot sam-
ple in order to minimize the influence of ambient outdoor natural
light variations. During image acquisition, direct sun light was
blocked with a large placard board (�4 � 8 ft). Tungsten lights
were used as the illumination source. Thus, both the reference
and sample images were acquired under the same lighting condi-
tion, i.e., direct halogen light plus diffuse sunlight.
2.3. Hyperspectral image processing

Each raw hyperspectral image was pre-processed with a series
of steps including: data format conversion; wavelength assign-
ment; scene calibration to percentage reflectance; spectral noise
removal; and band subset. In the pre-process step, the data format
was converted from integer to floating point. Each band was as-
signed with a wavelength which was calibrated previously.

The imaging sensor recorded only raw digital counts of reflec-
tance; therefore, the previously recorded dark and reference
images were used to convert the raw digital counts to percent
reflectance. For reflectance calibration, the following equation
was used:

Reflectancek ¼
Sk � Dk

Rk � Dk
� 100% ð1Þ

where Reflectancek is the reflectance at wavelength k; Sk is the sam-
ple intensity at wavelength k; Dk is the dark intensity at wavelength
k; Rk is the reference intensity at wavelength k. A Savitzky–Golay fil-
ter was used to remove the data noise. After preprocessing, the cal-
ibrated image had 171 bands with wavelength range from 400 to
900 nm. The average bandwidth was 2.92 nm.

From each calibrated image, the reflectance of soybean plants
needed to be extracted for further analysis. To do this, an image
spectral threshold process was first used to build a mask image
with plants in the foreground and the rest in the background.
The threshold process used one image band (550 nm) of the hyper-
spectral image. An NDVI image was also created using two bands
(750 nm for NIR, 650 nm for red). The mask image and NDVI image
were intercepted to create a region of interest (ROI) for the soy-
bean plants. Finally, the pure plant canopy reflectance of each sam-
ple was averaged and extracted over the ROI (Fig. 2).
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2.4. Calculation of vegetation index of whole canopy reflectance

Many vegetation indices have been designed and implemented
in various applications in the past (Jackson and Huete, 1991). In
this study, eight narrow-band vegetation indices were calculated
using the measured spectral reflectance of the plant canopy. For
simplicity, these indices are all based on two-band calculations
and listed in Table 1. The bands used in the calculation include:
Green, 551 nm, Red, 676 nm, and NIR, 751 nm. These wavelengths
correspond to maximum green reflectance (551 nm), maximum
chlorophyll absorption (676 nm) and the maximum chlorophyll
reflectance (751 nm) recorded by the hyperspectral sensor.

2.5. Modified approach to calculation of spectral derivatives

Instead of using soybean canopy reflectance to compute deriv-
atives directly, a modified approach was designed in this study.
For each sample reflectance, it was normalized based on the fol-
lowing equation:

NRk ¼
Rk

Controlk
ð2Þ

where Rk is the calibrated mean sample reflectance at wavelength k;
Controlk is one calibrated control sample reflectance at wavelength
k; NRk is the control normalized sample reflectance. The Control
reflectance was from the same time interval as the R reflectance.
Only one control sample was used for the normalization step. The
rest of the controls were still treated as regular samples. Through
this calculation, the sample reflectance was normalized band-
by-band by the control sample. The motivation of the process was
to offset the baseline signal from the control sample in order to
maximize the plant stress response due to the glyphosate applica-
tion. Since there were only four control measurements for each time
interval, it was desirable to maintain this number in the subsequent
statistical analysis. Instead of using full canopy reflectance from the
control sample for normalization, the hyperspectral image for the
control sample was divided into two parts, and each half retained
half of the plant canopy. Reflectance from one half of the plant
was treated as a regular control sample. Reflectance from the other
half of the plant was used for the normalization calculation.
Fig. 2. Illustration of generating region of interest over the soybean plant. The images w
650 nm; G: 550 nm; B: 450 nm).
As discussed previously, spectral derivatives could be robust
spectral estimates of agronomic parameters of plants since they
tend to reduce the variability due to changes in illumination or
background reflectance properties. This study computed the first
derivative of the above control-normalized sample reflectance.
Since the spectral data were discretely sampled for each wave-
length based on the predetermined spectral sampling interval,
the derivative spectra was calculated with the following differen-
tial method:

NR0k ¼
DNRk

DW
¼ NRkþ1 � NRk�1

Wkþ1 �Wk�1
ð3Þ

where Wk is the wavelength number (nm) at wavelength k. k + 1
indicates the next image band of the band at wavelength k, and vice
versa for k � 1.

2.6. Statistical analysis

Eight narrow-band vegetation indices from canopy reflectance
were analyzed using the SAS GLM procedure (SAS Institute Inc.,
Cary, NC). The mean separation of the indices between high, low
and 0 (control) doses and between 4, 24, 48, and 72 h after treat-
ment (0.05 confidence probability) were calculated. Moreover, lin-
ear discriminant analysis was implemented for each time period
after treatment. A leave-one-out cross validation schema was used
in the analysis. The discriminant analysis was based on the eight
vegetation indices. Four derivative indices were selected from the
modified first order derivatives. A similar linear discriminant anal-
ysis was also implemented over the four derivative indices.

3. Results and discussion

3.1. Visual assessment of plant injury and observations of reflectance

Fig. 3 shows the status of soybean canopy from the control
group at 4 h and 72 h post treatment. Significant growth can be
seen in the images. Two new branches have developed during this
period (in the middle of each image). The mean canopy reflectance
from 4, 24, 48, and 72 h are presented in Fig. 4. The reflectance
curves have similar shapes. Reflectance from later hours generally
ere generated with the hyperspectral image data with false color composition (R:



Table 1
Vegetation indices calculated with their references (G: Green, R: Red, NIR: Near-Infrared).

Acronym Name Equation Reference

DVI Difference Vegetation Index

DVI ¼ NIR� R

Tucker (1979)

NDVI Normalized Difference Vegetation Index

NDVI ¼ NIR� R
NIRþ R

Rouse et al. (1973)

RI Redness Index

RI ¼ R� G
Rþ G

Escadafal and Huete (1991)

RVI Ratio Vegetation Index

RVI ¼ NIR
R

Jordan (1969)

SAVI Soil Adjusted (L = 0.5) Vegetation Index

SAVI ¼ NIR� R
NIRþ Rþ L

� ð1þ LÞ

Huete (1988)

TVI Transformed VI

TVI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNDVI þ 0:5j

p
Perry and Lautenschlager (1984)

VNNIR

VNNIR ¼ NIR
NIRþ R

Pearson and Miller (1972)

VNR

VNR ¼ R
NIRþ R

Pearson and Miller (1972)
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demonstrated elevated green and NIR values, indicating the steady
increase in plant vigor. The monotonically increased NIR reflec-
tance coincides with the increase in hours.

For the low dosage treatment group, the new plant growth is
moderate. Fig. 5 shows the status of soybean canopy from the
low treatment group at 4 h and 72 h post herbicide application.
Contrary to the control group, the new leaves that appeared at
4 h did not develop into new branches. There is only a slight in-
crease in size for the new leaves. The inhibition from glyphosate
to plant growth is obvious. Another observation over the canopy
is that the plant is somewhat withered due to the effect of the her-
bicide. The mean canopy reflectance for the low dosage treatment
group is displayed in Fig. 6. The reflectance curves all have similar
shapes. Similar to the control group, the green reflectance gradu-
ally increased with the number of increased hours. However, the
Fig. 3. Illustration of control plants at 4 h and 72 h post treatment. Development of plant
false color composition (R: 650 nm; G: 550 nm; B: 450 nm).
NIR reflectance displayed a different trend. From 4 h to 48 h the
NIR reflectance increased monotonically, which is also similar to
the control group. At 72 h the NIR reflectance dropped quickly,
showing a decrease in plant vigor due to the herbicide treatment.
This information could be used for plant injury assessment. The
drawback is that this obvious change happened at 72 h post treat-
ment. It would be preferred if other indicators could be identified
for even earlier detection of plant injury.

Plant images of the high dosage treatment group for all time
periods are depicted in Fig. 7. No obvious new growth was ob-
served. The new leaves did not grow and plants were all withered.
Visible burn spots (Fig. 8) were also observed on the surface of the
leaves in the later period of the experiment. Since the experiment
was not set up for single leaf measurements, it was difficult to se-
lect the same leaf with good views from different time periods.
is clearly visible. The images were generated from the hyperspectral image data with



Fig. 4. Time sequence mean reflectance curves for the control group. NIR reflectance is increasing monotonically with the increase of hours.

Fig. 5. Illustration of low dosage treatment plants at 4 h and 72 h post treatment. Inhibition of plant growth from the herbicide is obvious. The images were generated from
the hyperspectral image data with false color composition (R: 650 nm; G: 550 nm; B: 450 nm).

Fig. 6. Time sequence mean reflectance curves for the low dosage treatment group. Note the change in NIR reflectance for 72 h post treatment.

150 H. Yao et al. / Computers and Electronics in Agriculture 89 (2012) 145–157
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Thus, the leaf image from 24 h was not as clear as the same leaf
from other periods. Generally, plant injury due to glyphosate is
obvious for the high dosage treatment group, especially for the
plants with longer durations after treatment.

The mean canopy reflectance for the high dosage treatment
group is displayed in Fig. 9. The reflectance curves from 4, 24,
and 48 h were grouped together with similar shapes, while the
curve from 72 h detached from the other curves. As for the three
curves, from 4, 24, and 48 h, the green reflectance still gradually in-
creased with the number of increased hours. The NIR reflectance
increased from 4 h to 24 h. At 48 h it dropped, which is similar to
the curve at 72 h from the low dosage treatment group. This trend
shows that the NIR reflectance could be used for injury detection
for the high treatment group at 48 h post application.

In Fig. 9, the curve from 72 h for the high dosage treatment has
higher reflectance values throughout the entire spectrum (400–
900 nm). The phenomenon is in contradiction to what was ob-
served for the rest of the experiment. A review of the experiment
Fig. 7. Illustration of high dosage treatment plants at 4, 24, 48, and 72 h post treatment. I
with the hyperspectral image data with false color composition (R: 650 nm; G: 550 nm
process revealed that when imaging the high dosage treatment
at 72 h, the pots were raised 2 in., which resulted in a shorter imag-
ing distance for those four pots. The purpose of this adjustment
was to compensate for canopy coverage in the image due to the
limited canopy development for the high dosage treatment group.
Consequently, the resulting reflectance curve was elevated. Since
this paper focused on using band ratio-based methods for data
analysis, which is insensitive to the overall magnitude change of
the reflectance curve, it was decided that this group of data would
be retained for further data analysis.

3.2. VI statistics

Eight narrow-band vegetation indices from canopy reflectance
data were calculated and analyzed. Tables 2–5 show the results
of the mean separation of the vegetation indices for 4, 24, 48 and
72 h after treatment, respectively. Table 2 indicates that 4 h after
treatment all vegetation indices (except DVI) were not significantly
nhibition of plant growth from the herbicide is obvious. The images were generated
; B: 450 nm).



Fig. 9. Time sequence mean reflectance curves for the high dosage treatment group.

Fig. 8. Observation on one leaf from the high dosage treatment group. The burned spots at 72 h are quite obvious. The images were generated from the hyperspectral image
data with false color composition (R: 650 nm; G: 550 nm; B: 450 nm).
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different from each other. Table 3 indicates that at 24 h after treat-
ment five indices, NDVI, SAVI, TVI, VNNIR, and VNIR, showed sig-
nificant difference between the control and low dosage groups. It
also indicates that the high dosage group was different from the
other two groups at 24 h. At 48 h after treatment (Table 4), all indi-
ces (except RI) were significantly different between the control and
high dosage groups. At the same time, the low dosage group was
different from the other two groups with the same indices. Lastly,
at 72 h after treatment (Table 5), the control group was signifi-
cantly different from the treatment groups (low and high) with five
indices, NDVI, RVI, SAVI, TVI, and VNNIR. To summarize the results,
at 4 h after treatment it was difficult to differentiate the treatment
groups with the vegetation indices. Starting from 24 h after treat-
ment, four indices, NDVI, SAVI, TVI, and VNNIR, demonstrated con-
sistent performance in separating the treatment groups. At 24 h,
the control and low dosage groups were significantly different
Table 2
Mean separation of the vegetation indices 4 h after treatment.A

Dose DVI NDVI RI RVI

Control 33.449a 0.855179a �0.63558a 12.8405a

Low 29.802b 0.847595a �0.62610a 12.1638a

High 31.63ab 0.851921a �0.63676a 12.5558a

A Mean is not significantly different with the same letter at 0.05 level.
from each other. At 48 h, the control and high dosage groups were
significantly different. At 72 h, the control group was significantly
different from all the treatment groups. Also at this time there was
no difference between the low and high dosage groups while the
other time periods exhibited differences.

Tables 6–8 show the results of the mean separation of the veg-
etation indices from 4, 24, 48, to 72 h after control, low dosage, and
high dosage treatment, respectively. First, the control group results
in Table 6 indicate that all vegetation indices (except VNR) were
not significantly different from 4 h to 72 h. Secondly, for the low
dosage treatment group in Table 7, the four indices identified in
the previous step, NDVI, SAVI, TVI, and VNNIR showed that 24
and 72 h were significantly different from 4 h. The 48 h results
were different from the other groups but the difference was not
significant. Indices from 24 and 72 h were not different from each
other. Lastly, for the high dosage treatment in Table 8, four indices
SAVI TVI VNNIR VNR

1.266521a 1.16412a 0.927589a 0.072411a

1.253560a 1.16085a 0.923798a 0.076202a

1.260882a 1.16272a 0.925960a 0.074040a



Table 3
Mean separation of the vegetation indices 24 h after treatment.A

Dose DVI NDVI RI RVI SAVI TVI VNNIR VNR

Control 36.549a 0.849220a �0.63577a 12.2837a 1.25917a 1.16156a 0.924610a 0.075390b

Low 33.193a 0.833335b �0.61849a 11.0123a 1.23446b 1.154699b 0.916667b 0.083333a

High 33.804a 0.842954ab �0.63602a 11.7713a 1.2488ab 1.15885ab 0.92148ab 0.07852ab

A Mean is not significantly different with the same letter at 0.05 level.

Table 4
Mean separation of the vegetation indices 48 h after treatment.A

Dose DVI NDVI RI RVI SAVI TVI VNNIR VNR

Control 37.376a 0.847632a �0.62385a 12.1415a 1.25717a 1.16087a 0.92382a 0.07618b

Low 34.658ab 0.824874ab �0.61453a 10.5008ab 1.22273ab 1.1510ab 0.91244ab 0.0876ab

High 31.325b 0.819014b �0.60397a 10.0838b 1.21261b 1.14848b 0.90951b 0.09049a

A Mean is not significantly different with the same letter at 0.05 level.

Table 5
Mean separation of the vegetation indices 72 h after treatment.A

Dose DVI NDVI RI RVI SAVI TVI VNNIR VNR

Control 38.550a 0.843957a �0.62801b 11.8192a 1.25221a 1.15929a 0.92198a 0.07802b

Low 30.473a 0.805404b �0.6188ab 9.3141b 1.19155b 1.14253b 0.90270b 0.09730a

High 37.838a 0.800282b �0.58851a 9.0634b 1.18779b 1.14028b 0.90014b 0.09986a

A Mean is not significantly different with the same letter at 0.05 level.

Table 6
Mean separation of the vegetation indices 4, 24, 48, and 72 h for controls.A

Hours after treatment DVI NDVI RI RVI SAVI TVI VNNIR VNR

4 33.45a 0.8552a �0.636a 12.841a 1.2665a 1.1641a 0.9276a 0.0724a

24 36.55a 0.8492a �0.636a 12.284a 1.2592a 1.1616a 0.9246a 0.0754b

48 37.38a 0.8476a �0.624a 12.142a 1.257a 1.1609a 0.9238a 0.0762b

72 38.55a 0.8440a �0.628b 11.820a 1.252a 1.1593a 0.9220a 0.0780b

A Mean is not significantly different with the same letter at 0.05 level.

Table 7
Mean separation of the vegetation indices 4, 24, 48, and 72 h after low dosage treatment.A

Hours after treatment DVI NDVI RI RVI SAVI TVI VNNIR VNR

4 29.80b 0.8476a �0.626a 12.164a 1.2536a 1.1609a 0.9238a 0.0762a

24 33.19a 0.8333b �0.618a 11.012a 1.2345b 1.1547b 0.9167b 0.0833a

48 34.66ab 0.8249ab �0.615a 10.501ab 1.2227ab 1.1510ab 0.9124ab 0.0876ab

72 30.47a 0.8054b �0.619ab 9.314b 1.1916b 1.1425b 0.9027b 0.0973a

A Mean is not significantly different with the same letter at 0.05 level.

Table 8
Mean separation of the vegetation indices 4, 24, 48, and 72 h after high dosage treatment.A

Hours after treatment DVI NDVI RI RVI SAVI TVI VNNIR VNR

4 31.63ab 0.8519a �0.6368a 12.556a 1.2609a 1.1627a 0.9260a 0.0740a

24 33.80a 0.8430ab �0.636a 11.771a 1.2488ab 1.1589ab 0.9215ab 0.0785ab

48 31.33b 0.8190b �0.604a 10.084b 1.2126b 1.1485b 0.9095b 0.0905a

72 37.84a 0.8003b �0.5885a 9.063b 1.1878b 1.1403b 0.9001b 0.0999a

A Mean is not significantly different with the same letter at 0.05 level.
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NDVI, SAVI, TVI, and VNNIR showed 48 and 72 h were significantly
different from 4 h. Also no difference was found between the 48
and 72 h groups. The 24 h result was different from the 4 h treat-
ment as well as the later periods. It displayed a transitional re-
sponse along the timeline after treatment. Performance from
other indices were not as good as the above four indices, i.e., NDVI,
SAVI, TVI, and VNNIR. To summarize, the four indices used in this
study, demonstrated potential for glyphosate injury detection.
Early plant stress caused by the herbicide could be identified at
24 h after treatment. Results from the low and high dosage groups
were slightly different with regard to plant response at 24 and 48 h
after treatment. At 72 h, these indices clearly showed that the
treatment groups were different from those at 4 h. The outcome
signifies that canopy reflectance could be an important tool for



Table 9
Summary of discriminant analysis with cross-validation using linear discriminant function. NDVI, SAVI, TVI, and VNNIR were used in the analysis.

Number of observations classified into treatment

From treatment Control Low High Accuracy (%)

(4 hours)
Control 2 0 2 50
Low 0 1 3 25
High 1 3 0 0

(24 hours)
Control 2 1 1 50
Low 0 2 2 50
High 1 2 1 25

(48 hours)
Control 3 1 0 75
Low 1 2 1 50
High 0 2 2 50

(72 hours)
Control 4 0 0 100
Low 0 3 1 75
High 1 1 2 50
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the detection of early plant stress/injury due to glyphosate
application.

The four best vegetation indices from the previous mean
separation analysis, NDVI, SAVI, TVI, and VNNIR were used in the
following linear discriminant analysis. The results are presented in
Table 9. In general, classification accuracy for each treatment group
increased gradually with longer duration. For example, from 4 to
72 h, accuracy for the control group changed from 50% to 100%. In
the same period, accuracy for the low dosage group changed from
25% to 75%, and for the high dosage group, 0% to 50%. If the goal
was not to separate the low and high groups, these two treatments
could be regarded as one treatment group. In this case the problem
became a two-class classification. Consequently the pooled result
had 87.5% accuracy for the treatment group for all the periods.
At the same time some control samples were classified as treatment,
or called false positive. The false positive rate was 22%, 22%, 11%,
and 0% for 4, 24, 24, and 72 h periods, respectively. Thus, from
the above linear discriminant analysis, it is demonstrated that
herbicide damage to the soybean plants could be identified from
4 to 72 h post application with vegetation indices derived from
canopy reflectance data. Longer duration of post application tends
to have better results with less false positive classification.
3.3. Modified derivative analysis

The calculated mean first derivatives based on the modified ap-
proach were plotted in Fig. 10. Derivatives from control, low dos-
age, and high dosage treatment groups were plotted separately.
The noticeable features in the figure are the derivative peaks. These
peaks have low magnitudes for the control group. The magnitudes
became larger for the low treatment and largest for the high treat-
ment groups. The change in peak magnitude is the result of treat-
ment difference in dosage. For the high dosage treatment group at
72 h, the magnitude change could be the result of the change in
imaging conditions. In addition to the peaks, most of the deriva-
tives are distributed horizontally with values close to zero. Natu-
rally, the derivative peaks can be used in the spectral data
analysis for plant injury detection.

From Fig. 10, four first derivatives were selected based on the
peak responses. The wavelength locations for these derivatives
were at 519, 670, 685, and 697 nm. Except for one green wave-
length, the other three are all in or near the red edge region. Similar
to the vegetation indices, linear discriminant analysis was imple-
mented with the four derivatives. The results are presented in
Table 10. The overall classification accuracy for each treatment
group had a similar trend to the results from the vegetation
indices. The accuracy increased gradually with longer duration,
but converged more quickly. For example, from 4 to 72 h, accuracy
for the control group changed from 50%, 75%, 100%, to 100%. In the
same period, accuracy for the low dosage group changed from 25%
to 100% at 24 h and later. For the high dosage group, the accuracy
was 75%, 75%, 100%, and 75%. For pooled treatment, the accuracy of
treatment group was 87.5%, 100%, 100%, and 100% for the four time
periods. The false positive rate was 22%, 11%, 0%, and 0%. Overall,
the spectral derivatives demonstrated better detection results than
did the vegetation indices for herbicide damage detection with
soybean canopy reflectance. Similar to the vegetation indices, the
derivatives also had better results with longer duration of post
application, as well as with less false positive classification.
Starting at 4 h, the treatment groups could be identified. After
24 h and later, the separation between control and treatment
became more obvious and also more consistent. Moreover, the
derivatives provided even better differentiation among different
treatment groups.

It is obvious that the modified derivative analysis generated
better results than the analysis based on the vegetation indices.
In this study, the canopy reflectance data was extracted from
hyperspectral imagery. The hyperspectral imagery was collected
in a greenhouse environment. Although artificial light was used
as the main source of illumination, the experiment was still influ-
enced by the external sunlight. The derivative approach could min-
imize the impact of light variation. This is one reason why the
derivatives performed better than the vegetation indices. This
study used a modified approach to calculate derivatives. The pro-
cess involved using sample data divided by control data. The moti-
vation for this step was to remove the influence of the baseline
measurement. In this study, the baseline measurement was half
canopy reflectance of a control sample. If this method was to be
adopted for practical use in the field, ancillary information would
be necessary to identify plants not affected by herbicide applica-
tion. Baseline spectral measurement can then be taken from the
healthy plants.
3.4. Further discussion

Another consideration for this study was the relatively small
number of samples in each treatment. Since each sample was im-
aged individually with the hyperspectral sensor, the potential size



Fig. 10. First derivatives plotted again wavelength. Note the peaks wavelength 519, 670, 685, and 697 nm.
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of the hyperspectral image data could be enormous if a large num-
ber of samples were used. In addition, large sample numbers in-
crease the complexity of sample preparation, data collection, as
well as image data analysis. With the above considerations, this
initial experiment took a moderate approach in order to fulfill
the research objective. For future research considerations based
on the current results, it is recommended more measurement time
intervals be used in the first 24 h post application. From a quanti-
tative point of view, it is suggested that more treatment levels be
used in the study. Finally to eliminate the influence of out-door
light variations, the imaging experiment could be implemented
in a dark room environment.



Table 10
Summary of discriminant analysis with cross-validation using linear discriminant function. First derivative indices at 519 nm, 670, 685, 697 nm were used.

Number of observations classified into treatment

From treatment Control Low High Accuracy (%)

(4 hours)
Control 2 2 0 50
Low 1 2 1 50
High 0 1 3 75

(24 hours)
Control 3 1 0 75
Low 0 4 0 100
High 0 1 3 75

(48 hours)
Control 4 0 0 100
Low 0 4 0 100
High 0 0 4 100

(72 hours)
Control 4 0 0 100
Low 0 4 0 100
High 0 1 3 75
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4. Summary and conclusions

In order to assess and detect the onset of glyphosate injury to
soybean plants, a study was conducted to measure the canopy
reflectance of soybean plants using a portable hyperspectral image
sensor in a greenhouse. The soybean plants were subjected to low
dosage (0.086 kg ae/ha) and high dosage (0.86 kg ae/ha) treat-
ments that were compared with controls. Hyperspectral images
were taken at 4, 24, 48, and 72 h post application. The reflectance
data was then analyzed with vegetation indices and with modified
spectral derivatives. Four vegetation indices, NDVI, SAVI, TVI, and
VNNIR, were found significant in detecting plant injury. With lin-
ear discriminant analysis, these indices could identify crop injury
at 24 h after application, at which time visual inspection could
not distinguish between glyphosate injured and non-treated
plants. It was also found that the VIs had difficulty separating the
treatment groups with different dosages. The modified derivative
analysis produced much better results than the vegetation indices.
The first derivatives (at wavelength 519, 670, 685, and 697 nm)
could potentially differentiate crop injury at 4 h after treatment.
From 24 h and beyond, the detection became quite obvious. More-
over, the derivatives demonstrated the ability to separate treat-
ment groups with different dosages. It is concluded that
hyperspectral imaging of plant canopy reflectance could be a useful
tool for early detection of soybean crop injury due to glyphosate
application, and that the modified spectral derivative analysis
proved to be better at detecting this than were the vegetation indi-
ces. For future studies, it is suggested that more herbicide treat-
ment levels and shorter imaging intervals be used to track
canopy reflectance changes in the plant injury process.
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